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Abstract
A nonlinear data modeling computer program, STEW, employing the

Levenberg-Marquardt algorithm, has been developed to model the experi-
mental 2a9pu(n,f) and 235U(n,f) cross sections. This report presents results
of the modeling of the 239pu(n,f) and 235U(n,f) cross-section data. 
cMculation of the fission transmission coefficient is based on the double-
humped-fission-barrier model of Bjornholm and Lynn. Incident neutron en-
ergies of up to 5 MeV are considered.

1 Introduction

The 2a9pu(n,f) and 23SU(n,f) cross sections have been well measured[I, 2]. Figure 1
shows the latest ENDL evaluation of the 2agPu(n,f) and 2aSU(n,f) cross sections 
to 5 MeV of incident neutron energy. The evaluation of ~agPu(n,f) is based on 
analysis of 33 sets of experimental data whereas the evaluation of 2aSU(n,f) is based
on an analysis of 60 sets of data. The estimated uncertainty of the evaluation is
less than 2%[3]. To calculate the fission cross section, the double-humped fission
barrier model of Bjornholm and Lynn[4] is usually employed. Calculated cross
sections from this model can be made to best-fit the experimental data, in the
least-square sense, by adjusting the parameters in the model. The consistency of
the parameters obtained from various fits can be used to determine the applicability
of the physical model.

When conservation of angular momentum and parity is enforced in the simula-
tion of reaction dynamics, a physical model of nuclear fission is necessary despite
the existence of experimental fission cross sections. This can be seen from the
Hauser-Feshbach[5] formulation of the fission cross section calculation:

Ff(U, J, ~r)
~Tn,f(Ei, I, P) = ~ ~Ti{(Ei, I, P; U, J, 7r) F(U, J, ~) (1)

J, Tr
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Figure 1: Experimental evaluation of 2agPu(n,f) and 235 U(n,f) cross sections 
function of incident neutron energy.

where the left-hand-side is the cross section of neutron-induced fission on a target
with spin I and parity P. The center of mass energy of the neutron-and-target
system is denoted by Ei. The excitation energy, angular momentum, and parity
of the compound nucleus are U, J, Tr, respectively. The reaction cross section,

aR(Ei, I, P; U, J, ~r), describes the probability of the compound-nucleus formation.
The fission and total decay widths, El(U, J, 7r) and F(U, J, 7r), can be related 
transmission coefficients through the reciprocity theorem[6], and F(U, g,~r) is 
sum of widths of all possible decay channels. In order to treat fission as one of
the competing channels of the compound reaction, the fission width Ff(U, J, 7r) 
a function of U, J, 7r is required and must be provided by a physical model.

Calculations of various cross sections of the neutron induced reactions on fissile
isotopes, such as 239Pu and 235U, show that fission cross section is the dominant

component of the reaction cross section[7, 8]. A small change in fission cross section
can have a large effect on some of the weaker channels such as (n,n’) or (n,2n),
for example. It is therefore important to constrain the calculated fission cross
section to the known experimental values in order to reduce the uncertainty in the

calculated cross sections of the non-fission channels. Such need was heightened



VA hcoA VB hUB
24Opu 5.57 1.04 5.07 0.6
236U 5.63 1.04 5.53 0.6

CA1 OAI CBI OBI
24Opu 0.015 0.284 0.271 0.343
236U 0.015 0.284 0.027 0.343

CA2 OA2 CB2 0B2
24Opu 1.6 0.4265 0.5 0.5
236U 1.6 0.5 0.4265 0.5

Table 1: Initial parameters used in calculating fission cross sections for the 24° pu

and 236 U nuclei.

in our modeling of the nq-239pu and ~q-235U reactions. The computer program,
STEW, has therefore been written in order to accomplish the task of constraining
the parameters in the fission model such that the calculated fission cross sections
best fit the experimental data.

STEW is a stand-alone computer program. The computer program, chosen
by the user, that carries out the model calculations is called by STEW. The user
determines which parameters in the model calculations are to be adjusted. These
parameters in the input file are marked by a marker selected also by the user. This
stand-alone feature of STEW leaves the model-calculation component completely
arbitrary and therefore allows it to be applied to the modeling of any physical
quantity for which there exists experimental data.

2 The Fission Model Used

By adding shell corrections to the Liquid Drop Model[9], Strutinsky[10] pioneered
the work that lead to the double-humped fission barrier model of Bjornholm and
Lynn[4]. We use this model to simulate the nuclear fission process. In the model,
the shapes of the two fission barriers are approximated by two parabolas. The
transmission coefficient of a nucleus, with excitation energy E, through a single
barrier is given by Hill and Wheeier[11] as:

fo
~

fi(J, vc, e)d¢T(J, E) = 1 + exp [V + (2)

where V is the fission barrier height and hw is the curvature of the barrier at the
saddle point. The dependence of the level density ~(d, ~, E) on parity is taken 
be a constant:

1 j
iS(J, ~- = -1, E) =/5(J, 7v = +1, E) = ~5( (3)



The functional dependence of tS(J,E) on angular momentum, J, is given by 
Gaussian:

~(J, E) = pj(J)p(E) 
(2J + 1)exp [-(J + 1/2)2/2o-2]

2V/~o-2 p(E) (4)

and the dependence of p(E) on the excitation energy, E, is assumed to be of the
constant temperature form:

p(E) = E E) : c exp s/o (5)
J

where 0 is the nuclear temperature and C is a constant. The spin-cutoff parameter,

o-2, which characterizes the Gaussian in J, is assumed to be independent of the
excitation energy. The two fission barriers, labeled by A and B, are assumed to
be uncorrelated so that the total transmission coefficient through both barriers is

simply:

T(J, ~, E) = TA(J, ~, E)TB(J, ~, 
TA ( J, 76 E) + TB( J, 7c, E) 

(6)

Once the fission transmission coefficient is obtained through this model, it is used
to calculate the fission cross section by employing the statistical description of
nuclear reactions given by Hauser and Feshbach[5].

Following the suggestions of Bjornhohn and Lynn[4], the excitation energy, c
(c.f. Equation (2)), which is measured from the top of the barriers, is divided 
two ranges. They are, in units of MeV: 0 < c < 3 and 3 _< c. Initial values, which
are again based on suggestions from Bjornholm and Lynn, of the two fission barrier

heights, their corresponding curvatures and level density parameters, are given in
Table 1. Since c is divided into two ranges, two sets of level density parameters
are used. The level density parameters (c.f. Equation (5)) in the first range 
excitation energy above barriers A and B are labeled by CA1, OA1, Cm, Oul whereas
those in the second range of excitation energy are labeled by CA2, OA2, Cm, OB2.
These are the parameters that are adjusted in order to best fit the experimental
fission cross sections. For incident neutron energy of up to 5 MeV, only first-chance
fission needs to be considered.

3 The Optimization Algorithm Used

The process of adjusting parameters in a theoretical model to obtain the best fit to
experimental data is a problem of minimization in a multi-dimensional space[12,
13]. Since the functional dependence of the fission transmission coefficient on the
parameters in Table 1 is not linear, we are faced with a nonlinear optimization

problem which is difficult in general. Several methods which address the issue of
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nonlinear data modeling are described in reference [13]. We adopted the Levenberg-
Marquardt method[14], which provides an algorithm for varying smoothly between
the inverse-Hessian method and the steepest decent method[13].

Consider a set of M unknown parameters g - {ak; k = 1, 2, ..., M} in a model
described by

= y(x; ~) (7)

where x is the independent variable. The best-fit parameters are those that give
rise to the minimum of the X2 merit-function defined by

)~2(~) -~ Yi -- y(x i; a) (g)

i=1 O-i

where Yi is the experimental value at xi and ~i is the standard deviation of the
data point (xi, yi). The total number of points is N. When the X2 is near its
minimum, the inverse-Hessian method is used. Let groin be the value of g at which
X2 is a minimum and g~ur be the current value of g. The inverse-Hessian method
gives the solution of dg = gmi~ - g~ur by

M

E = (9)
/=1

where

---- =E -- -- a ] 02y(xi; a)]
1 02X 2 N 1 VOY(Xi;d) Oy(xi;~) [Yi--Y(2Ci’ ) O~lOa; (10)OLkl
20aaOaz /--1 a~ L Oak Oaz

1 ox _ w - v(z ; g)
/~k ~- 2 Oak i=1

0-2 Oak
(II)

When X2(d) is far from X2(gmm), the steepest decent method is used which gives
a solution of 5g by

5ak = constant x/3k. (12)

Recognizing that the magnitude of the constant in Equation (12) must be propor-
tional to 1/~kk and combining Equations (9) and (12), Marquardt arrived at 
equation:

M

E c~,Sa, =/3k (13)
i=1

where

a~ = akk(l+ A) (14)

a~, = akz (k)4 (15)

and ~ is a dimensionless parameter. The variation between Equations (9) and (12)
is achieved by adjusting the value of k. When k is large, the a’ matrix becomes



diagonally dominant and Equation (13) approaches Equation (12). On the other
hand, when A becomes very small, Equation (13) approaches Equation (9). 
giving an initial guess for the set of M parameters, g, and an initial value of A,
one can iteratively solve for 5g from Equation (13) by adjusting the value of 
until a preset condition for terminating the iteration is satisfied. A detailed recipe,
which we followed, of such a procedure is given on page 679 of reference [13]. The
termination condition we use is the following:

¯ ifx 2 < 0.01 or the fractional change ofx2 is less than or equal to 0.1%.

In calculating the elements of the c~ matrix, the second-derivative term in Equa-
tion (10) is ignored for reasons of stability[13]. The first derivatives with respect
to the parameters g are calculated numerically which leaves the functional depen-
dence of y(x; d) on d completely arbitrary.

4 Results and Discussions

Based on the algorithm outlined in Section 3, the computer program STEW has
been written to search for the parameters given in Table 1 in order to obtain the
best fit to the evaluated fission cross sections shown in Figure 1.

The model calculation includes two reaction mechanisms: the direct and the
compound. The direct reaction mechanism is described by the optical model[15].
The compound reaction mechanism is described by the statistical reaction model
of Hauser-Feshbach[5], and the fission process is considered as one of the compet-
ing channels of the compound reaction. As both the ~39pu and 235U nuclei are
deformed, the coupled-channel option in the optical model is employed and the
theoretical tool used for this component of the calculation is the ECIS code[16].
The first 5 discrete states of the ground state band of the 2agPu and 2asU nuclei

ha)A VB ha)B
240pu 5.71 1.07 5.05 1.68
236U 5.61 1.03 5.53 0.64

CA1 OA1 CB1 OB1
240pu 0.015 0.177 0.039 0.433
236U 0.012 0.272 0.892 0.694

CA2 OA2 CB2 OB2
24Opu 0.00001 0.1501 0.025 0.4201
236U 0.066 0.3776 0.201 0.4717

Table 2: Final parameters obtained from the optimization program STEW for the
24°pu and 236 U nuclei.



are coupled. We use the phenomenological optical model potential of Dietrich[17].
The optical-model parameters given by Dietrich are used in the fission-parameter
search by STEW for the 2a~U nucleus. For the ~agPu nucleus, the optical-model pa-
rameters from Dietrich are used as the initial values. The optical model parameter
search routine BIGLAZY[18, 19] is then used to slightly modify these parameters
to give the best fit to the experimental total cross section, 2a~Pu(n,tot), and to the
available angular distribution data for elastic scattering[i]. Ground-state deforma-
tion parameters used for the 239Pu nucleus are: f12 = 0.2 and /34 = 0.06 as they
give rise to the best BIGLAZY fit. For the 2asU nucleus, these deformation pa-
rameters are taken from the calculations by MSller and Nix[21] as: ¢t2 = 0.22 and
/34 = 0.08. The Hauser-Feshbach component of various reaction channels is calcu-
lated using the reaction modeling code POLIFEMO which is part of the IDA[18]
system of codes. In the energy range of up to 5 MeV of incident neutron energies,
the compound reaction channels include capture, compound elastic scattering, in-
elastic scattering and fission. STEW computes and iteratively minimizes the X2(g)

by taking the experimental data and repeatedly calling POLIFEMO. The initial
values of fission parameters, that is, the initial values of d, are given in Table 1.
Table 2 shows the results of the STEW optimization.

In order to reduce the runtime of the optimization procedure, the number of
data points in the ENDL99 evaluation for both 2agPu(n,f) and 2a~U(n,f) is reduced.
This data reduction is assisted by the computer program THINNER[20] which
preserves the shape of the evaluated (n,f) curve while reducing the number of data
points. A standard deviation of 2% of the evaluated fission cross section is assigned
to each data point for both 2agPu(n,f) and 2aaU(n,f) evaluations. The total number
of parameters adjusted is 12. However, not all parameters are allowed to vary
simultaneously at the beginning. Typically, we let 4 parameters to be adjusted
at one time. The best-fit values are then taken as constants when another 4
parameters are allowed to vary. Once all 12 parameters have been separately
adjusted, we let all 12 parameters to simultaneously vary and obtain the final
best-fit values. Results shown in Table 2 are from the final iteration. In general,
the optimization process is time-consuming. We run STEW on a Sun workstation
employing four 300 MHz UltraSPARC-II processors (only one processor is used at
one time). With the ECIS calculations carried out beforehand and results stored,
the runtime for the minimization ranges from about 20 minutes to a few hours. The
length of time depends on the number of parameters that are being simultaneously
adjusted, the number of iterations required to obtain the best fit, as well as other
details of the minimization procedure, among which are the stopping condition
and the step size of the A parameter in the Levenberg-Marquardt algorithm.

Figures 2 and 3 show comparisons of the calculated fission cross sections and
the experimental evaluations. The calculations are performed using parameters
in Table 1 and those in Table 2, separately. The curve corresponding to the set
of fission parameters in Table 1 is labeled by "Bjornholm + Lynn parameters"
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Figure 2: A STEW fit of the 2sgPu(n,f) cross section, based on the double-humped-
fission-barrier model of Bjornholm and Lynn, as a function of incident neutron
energy.

whereas the curve corresponding to the set of parameters in Table 2 is labeled by
"STEW parameters". One sees, from these figures, that the parameters are well

constrained in that the agreement between the model calculation and experimental
data is much improved.

A close examination of Tables 1 and 2 shows that the change of parameters
as a result of the optimization process mostly occurs to those that are used in
the constant-temperature level density given by Equation 5. The change in fission
barrier heights is less than 150 keV in all cases, consistent with the uncertainties
from the experimental determination of the barrier heights[22]. With the exception
of hcoB for the 24°pu nucleus, the change in curvatures is also very small, rang-
ing from 0.6% to 7%. The increase of h~B in 24°pu from 0.6 MeV to 1.68 MeV
means that in order to get a good fit to the experimental data, the outer barrier,
that is, barrier B, of 24°pu must be narrower which leads to a higher penetra-
tion probability. On the other hand, the changes in the level-density parameters
are rather dramatic. The most noticeable characteristic of the change in these

parameters is not so much in the absolute magnitude of the values, but in the



Figure 3:

1.6

235U(n, f) Cross Sect i 
I

o ENDL99
--- B~ornholm + Lynn parameters

STE~ parameters

(STEW fit)

I \
I \

[ \
l \

I \
l \ \

1.0

0.8

! \

/
/

/
/

/
/"- /

10o
Ein c (MeV)

A STEW fit of 235U(n,f) cross section, based on the double-humped-
fission-barrier model of Bjornholm and Lynn, as a function of incident neutron
energy.

relative magnitude of the nuclear temperature. The nuclear temperature should
increase with the excitation energy of the nucleus, which means that OA2,B2 should

be greater than 9A~,m. Table 2 shows that this is not the case except for the
level density above the first barrier in 24°U. Since STEW tries to best minimize
the X2 of Equation 8 for the pre-selected model of Equation 7, this unphysical

feature in the optimized level-density parameters suggests a possible inadequacy
of the constant-temperature-level-density model in describing the nuclear fission
process. One piece of physics that is absent in the constant-temperature level
density is the collective enhancement due to the large deformation of the nucleus

before fission[6]. Such collective effect is most pronounced when the difference
between the excitation energy of the nucleus and the fission barrier height is not
large. However, it should be pointed out that the nuclear structure in a pre-scission
nucleus is not known well enough to uniquely determine the correct level density

formulation. This introduces an element of arbitrariness in the choice of level den-
sity and the associated correction factors in the calculation of fission cross sections.

Another missing element in the fission model used is the damping in the second



well which describes the interaction of the fission motion with the internal degrees
of freedom[23]. The absence of such a description could also have contributed to
the unphysical behavior of the level density parameters observed in Table 2. We
also note that while the continuity of the experimental data ensures the overall
continuity of the calculated fission cross sections during the optimization process,
the explicit continuity in the constant-temperature level density between the two
ranges of excitation energy is not enforced. This gives rise to the small dip in the
modeled 2aSU(n,f) cross section at about 2 MeV of incident neutron energy. At this
incident energy, the excitation energy of the 236U nucleus is in the region where
the chosen first and second excitation-energy ranges meet.

5 Conclusions

To conclude, STEW successfully optimized the fission parameters in the incident
energy range of up to 5 MeV. The generality of the program allows it to be applied
to any type of nonlinear data modeling. Also revealed in the optimization process
is the possible deficiencies of the constant-temperature-level-density model used
in calculating fission cross sections. Thus, by examining the physical content of
the best-fitted parameters, the data modeling procedure presented in this report
provides a means of investigating the soundness of the physical models employed
in the calculation of a given physical quantity.
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